Almost sure limiting behaviour of first crossing points of Gaussian sequences

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost sure limit theorems for the maximum of stationary Gaussian sequences

We prove an almost sure limit theorem for the maxima of stationary Gaussian sequences with covariance rn under the condition rn log n (log log n)1+ε = O(1).

متن کامل

Almost Sure Limit Theorem for the Maxima of Strongly Dependent Gaussian Sequences

In this paper, we prove an almost sure limit theorem for the maxima of strongly dependent Gaussian sequences under some mild conditions. The result is an expansion of the weakly dependent result of E. Csáki and K. Gonchigdanzan.

متن کامل

Unexpected behaviour of crossing sequences

The n crossing number of a graph G, denoted crn(G), is the minimum number of crossings in a drawing of G on an orientable surface of genus n. We prove that for every a > b > 0, there exists a graph G for which cr0(G) = a, cr1(G) = b, and cr2(G) = 0. This provides support for a conjecture of Archdeacon et al. and resolves a problem of Salazar.

متن کامل

Almost-sure Growth Rate of Generalized Random Fibonacci sequences

We study the generalized random Fibonacci sequences defined by their first nonnegative terms and for n ≥ 1, Fn+2 = λFn+1 ± Fn (linear case) and F̃n+2 = |λF̃n+1 ± F̃n| (non-linear case), where each ± sign is independent and either + with probability p or − with probability 1 − p (0 < p ≤ 1). Our main result is that, when λ is of the form λk = 2 cos(π/k) for some integer k ≥ 3, the exponential growt...

متن کامل

Almost Sure Central Limit Theorem for a Nonstationary Gaussian Sequence

Let {Xn; n ≥ 1} be a standardized non-stationary Gaussian sequence, and let denote Sn ∑n k 1 Xk , σn √ Var Sn . Under some additional condition, let the constants {uni; 1 ≤ i ≤ n, n ≥ 1} satisfy ∑n i 1 1−Φ uni → τ as n → ∞ for some τ ≥ 0 and min1≤i≤n uni ≥ c logn , for some c > 0, then, we have limn→∞ 1/ logn ∑n k 1 1/k I{∩i 1 Xi ≤ uki , Sk/σk ≤ x} e−τΦ x almost surely for any x ∈ R, where I A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1979

ISSN: 0304-4149

DOI: 10.1016/0304-4149(79)90006-1